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Intro & rationale  
Blockchain, born out of the desire to create a global decentralized currency - 
Bitcoin, has evolved a lot over the fifteen years since it's been developed. The first 
evolution came in the form of smart contract blockchains. Recognizing the 
limitations of the "single-app" model of Bitcoin, the "world-computer" model of 
Ethereum was born. This has allowed developers to build trustless & 
trust-minimized applications and has resulted in the birth of several new 
industries - most notably DeFi and NFTs.  
 

Scalability challenges 
However, while Ethereum has successfully solved for the "programmability" aspect 
of blockchain, many challenges have remained to be solved. The most notable of 
those is - scalability. Ethereum blockchain is notoriously unscalable - with a 
maximum throughput of ~15 transactions per second. In times of market demand, 
this can raise the fees for a simple "money transfer" action to well over $50. For 
more complex transactions, these fees can reach into the $100 - $1000 range. This 
issue has made DeFi the playground of the well-off and has stood as a barrier 
towards decentralized services reaching mainstream adoption. 
 

Scaling solutions  
The problem of blockchain scalability has had many solutions, some more 
successful than others. This document will not serve to iterate over all of them, but 
just mention a few meaningful examples. First examples were the various 
alternative blockchains, which operated with a few masternodes processing the 
majority of transactions. Some examples include Polygon PoS & Binance Smart 
Chain.  
 
The second category were blockchains operating on a different model from 
Ethereum - implementing alternate virtual machines, sharding and many other 
scaling techniques. Some examples in this category include NEAR Protocol & 
Solana. The third category, and the one this paper will focus on the most are 
so-called "rollups''.  
 
Rollups are attached to a "parent" blockchain and use some form of cryptography 
to "inherit" a part of all of the security of the "parent" blockchain. Most rollups 
today can broadly be split into two categories - Optimistic Rollups and Zero 
Knowledge Rollups.  
 

 



 

Some notable examples of rollups include Optimism, Base, Arbitrum, zkSync, 
Polygon zkEVM, Scroll, etc...  
 
With the methods outlined in the text above, blockchain fees can be reduced to 
<$0.01 per transaction, which unlocks the potential of blockchain to a much wider 
audience.  

Modular Blockchain & Data Availability 
Coming back to rollups - in this paper we will focus on Ethereum-aligned rollups 
("EVM Rollups"). In order to achieve the functionality promised by those rollups, a 
lot of changes needed to be done at the protocol level. 
 
Since neither Ethereum nor its associated virtual machine - the EVM - were 
originally built with rollups in mind, the developers started adapting the core 
blockchains and building novel solutions to support functionality of rollups. The 
most notable one of these solutions was the appearance of "Data Availability" 
layers - protocols which store the data required by rollups to ensure the security of 
validated transactions. Some of these protocols include Celestia and NEAR. Even 
Ethereum itself adapted to support roll ups - with the ERC4844 improvement - 
called "proto danksharding". While technically different, all of these protocols 
functionally achieve the same thing - they provide a cheap but ephemeral storage 
for rollup data - a technical prerequisite for rollups to hit the <$0.01/tx goal. 
 

Scaling state of art 
With rollups and data availability - blockchains have mostly been scaled for the 
needs of users today. Most transactions today can be executed on L2/L3 
blockchains for $0.01 - $0.1.  
 

Usability challenges 
While scalability has been touted as the biggest challenge towards the mainstream 
adoption of blockchain technology, it is by no means the only one. The usability of 
many blockchain architectures is substandard. Again, this paper will explore the 
Ethereum (EVM) ecosystem, but similar conclusions can be applied to other 
architectures. 
 

 



 

Transaction Fees (Gas) 
One of the core features of smart contract blockchain architectures is the concept 
of "gas". Gas is used to pay for transactions and is usually denominated in a coin 
which is native to the blockchain on which the transaction is being executed. On 
Ethereum, this coin is Ether (ETH). Gas is a necessary requirement for smart 
contract blockchains. It prevents malicious users griefing the nodes which validate 
the transactions by running expensive computation or infinite loops. However, gas 
introduces complexity when people are interacting with tokens which are not 
native to the blockchain on which the transaction is being executed. 
 
One example of such a token is USDC. This is a token, deployed on all major 
programmable blockchain networks which is tied 1:1 to the United States Dollar. 
Many users interact with these tokens, since they're looking to escape from the 
value volatility of crypto-only tokens, such as ETH or BTC. However, when a user is 
sending USDC to someone, they need to have not only USDC, but also the native 
currency. So in the case of sending ETH on Ethereum, the user must have USDC 
and ETH. 
 
This means that users must continually maintain the balance of ETH and "seed" 
every new address that they create with an initial ETH balance. For new users, this 
is another friction point which requires a learning curve and disincentivizes 
adoption. 
 
This problem has been explored and approached through many standards. On 
Ethereum, it's mainly solved by Account Abstraction teams working on standards 
such as ERC4337 & ERC3074. Later in this paper, we will present a novel approach 
to this problem. 
 

Elliptic curves 
While interacting with smart contract blockchains, users must commit signed 
transactions to the blockchain. These transactions are based on asymmetric 
cryptography, notably - elliptic curve cryptography. Each blockchain can choose 
their own curve, but the most popular one is  secp256k used by Bitcoin, Ethereum 
and all EVM rollups. For example, Solana uses curve25519 and thus validates the 
cryptographic commitments differently. 
 
Elliptic curve cryptography isn't specific to blockchains only, and many 
interesting solutions exist which implement different elliptic curves. One such 
example is Passkey Authentication, which uses ES256 as its authentication curve. In 
native blockchain implementations, these alternate methods are not supported - 
limiting the usability of blockchains. 

 



 

 

Account recovery & protections 
Handling crypto in self-custody is off-putting to many users since they must take 
care of preserving their own accounts and protecting themselves from losses. If 
the users lose access to their private key, they lose access to their funds. While 
"crypto natives" have adjusted to this way of thinking - it remains a large hurdle 
towards adoption of crypto self-custody. 
 

Smart contract accounts 
Similar to solving the gas fee problem, the solutions to the usage of elliptic curves 
and account recovery are Smart Contract Accounts (SCAs). These accounts can 
attach arbitrary execution logic to any transaction and as such they can improve 
the usability of blockchain systems substantially. Some examples of SCAs include: 
 

●​ Gas abstraction & sponsorship: Allowing the users to cover on-chain 
transaction fees with non-native assets _or_ allowing blockchain 
applications to sponsor the gas costs for their users. 

 
●​ Account recovery: The ability for users to recover funds if they lose access 

to their private key. This can be done through a trusted recovery provider or 
through methods such as social recovery. 

 
●​ Custom elliptic curves: The ability for users to use passkeys or other 

cryptography which is not native to the core blockchain. 
 

●​ Custom execution logic: The ability for users to customize the execution 
logic of their blockchain accounts. This includes setting spending limits, 
authorizing multiple signers, requiring a form of two-factor authentication, 
etc... 

 

Problems with rollups & smart accounts 
While rollups have solved for scalability & smart accounts have solved for usability 
- they have introduced a new set of problems - which Klaster was created to solve. 
These problems can broadly be categorized into two main categories: 
 

●​ Asset fragmentation: When users are interacting with multiple rollups, 
their assets are fragmented and can’t be easily accessed by applications. If 
the user has supplied e.g. USDC to AAVE on Arbitrum and wants to deposit to 

 



 

a different lending protocol on e.g. Base - they must first unwind their AAVE 
position, bridge their assets and then they call the deposit transaction on the 
destination chain. The user is required to interact with three separate 
applications and sign three separate transactions to get the effect they 
desire. ​
 

●​ Account fragmentation: If users wish to access the benefits of Smart 
Contract Accounts that we mentioned earlier, they must deploy separate 
instances of the same Smart Contract Account on all the blockchains they’re 
using. Thus, the applications which work with these accounts are not able to 
assume that the user has an account available on different blockchains. 
Beyond this, when the user is changing the authorization or management 
modules on their smart account - the changes are not distributed to other 
blockchains. This fragments the accounts which the user has and they have 
to separately maintain multiple instances of accounts across every rollup 
they use. If we’re moving towards a thousand+ rollup future - this becomes 
completely unsustainable. 

Transaction Commitment Layer 
This paper will present a novel mechanism, through which users are able to 
execute multiple transactions, across multiple independent blockchain networks 
(L1s & rollups) - with a single off-chain signature.  

Separating transaction commitment and execution 
To achieve this, we separate transaction commitment (sending a signed transaction 
to the blockchain) from transaction execution (blockchain nodes receiving and 
processing the transaction). 

 



 

In traditional blockchain execution models, once the user has signed a transaction, 
the transaction is immediately posted to the blockchain, picked up by the nodes 
and executed. This design was created for single-chain flows and works quite well 
- as long as the user is interacting with one blockchain only.  
 
However, when the user/dApp/Wallet wishes to encode actions that traverse 
multiple blockchains - and those are becoming more and more common as rollups 
gain market share - they must manually commit each transaction to its respective 
blockchain. Committing a transaction includes: 
 

1)​ Encoding the transaction 
2)​ Signing the transaction with a private key 
3)​ Calling the RPC endpoint of a node for that blockchain network. 

 
What this paper proposes is to create a separate, non-blockchain P2P network - 
which would have the sole purpose of committing transactions to blockchains.  

Execution Mechanism 
We will start by introducing the protocol technical primitives: 
 

●​ Interchain Transaction (iTx): An interchain transaction is a bundle of one 
or more blockchain transactions, to be executed on one or more blockchain 
networks. Thus, each interchain transaction can contain an arbitrary 
number of “regular” blockchain transactions. iTx is encoded as a Merkle 
Tree of “child” transactions. The iTx hash is the root hash of that Merkle 
Tree.​
 

●​ Interchain Commitment: An interchain commitment is the  root hash of the 
Interchain Transaction Merkle Tree root signed by a Klaster Node. This 
commits the node to execute all the transactions in that iTx or get slashed by 
the Klaster protocol.​
 

●​ Public Execution Network (PEN): The Klaster P2P network serves to 
execute the Interchain Commitments. It uses staked or re-staked tokens to 
provide economic guarantees of execution. This will be the Klaster Public 
Execution Network (PEN)​
 

●​ Multichain Smart Account: A Multichain Smart Account is a Smart Contract 
Account which is available on multiple blockchains. It uses deterministic 
address derivation to provide the dApps which interact with it an address 
for every blockchain - which they can have certainty is under the control of 
the same user. Users are able to derive an arbitrary number of Multichain 
Smart Accounts from a single “master” account by providing the derivation 

 



 

function with a Salt parameter. ​
 

Executing an interchain transaction 
When executing an Interchain Transaction, the Klaster PEN must follow a strict 
process. 

1. Encoding the Interchain Transaction 
dApp/Wallet creates an Interchain Transaction object. This object contains all 
the required information for the nodes to execute a sequence of transactions 
across multiple blockchains. The Interchain Transaction object contains:​
 

1)​ A list of native blockchain transaction objects. ​
 

a)​ For EVM, these are ERC4337 UserOp objects, with extra information on 
top. The extra information is:​
 

i)​ ChainID on which the UserOp needs to be executed​
 

ii)​ Salt parameter, determining which of the derived Multichain 
Smart Accounts the transaction needs to be executed on.​
 

iii)​ Minimum Block Height determining the earliest block height 
on which the node is to execute the transaction.​
 

b)​ For every other VM (e.g. Soalana, Near, …) a transaction encoding 
standard needs to be defined. This is beyond the scope of this version 
of the whitepaper.  
 

2)​ Payment information. The user communicates a Payment Info object in 
which they specify how they would like to cover the cost of executing the 
Interchain Transaction. This can include payments in native gas tokens, 
payments in some other tokens (ERC20 or otherwise) or even an off-chain 
payment structure (pay by credit card, prepay transactions with a “gas 
tank”, subsidized transactions)​  

Interchain Transaction Example 
One example of an interchain transaction would be a transaction which moves a 
lending position to a blockchain which has the most favorable yield with a single 
signature. 

1.​ Withdraw USDT from AAVE on Optimism 
2.​ Call Across to bridge USDT from Optimism to Arbitrum 
3.​ Supply USDT to AAVE on Arbitrum 

 



 

4.​ Withdraw USDC from AAVE on Polygon 
5.​ Call Across to bridge from Polygon to Base 
6.​ Deposit USDC to AAVE on Base 

An example of an interchain transaction flow 
 
The interchain transaction will be encoded as a Merkle Tree, where all of the child 
transactions will be the leafs. The iTx hash - is the Merkle Tree root hash of all of 
the child transactions.  
 

 



 

 
 

Example of a Merkle Tree encoding for an interchain transaction 

 

2. Sending the Interchain Transaction 
The dApp/Wallet is connected to a Light Node. A light node is a node in the Klaster 
PEN which does not execute Interchain Transactions nor does it provide Interchain 
Commitments. The light node would be owned and operated by the dApp or Wallet 
developers / operators. The role of the light node is to run auxiliary tasks - such as: ​
 

○​ iTX gas cost simulation 
○​ Maintaining a list of full-node peers 
○​ Providing network gossip to non-committing full nodes for slashing 

purposes. 
 

In this step, the dApp/Wallet will send the unsigned Interchain Transaction  to 
the light node.  

3. Interchain transaction pre-processing 
The interchain transaction will be pre-processed by the light node. The light node 
will take all the child transactions and simulate the gasLimit for those 
transactions. If gasLimit has been provided by the wallet/dApp - no simulation 
will be done.  
 

 



 

After the transaction has been pre-processed, the light node will pass the unsigned 
Interchain Transaction bundle to its Full Node peers in the Public Execution 
Network. 
 
Full Node Definition: A full node is a node which has the ability to generate 
Interchain Commitments, has staked tokens in the StakeManager contracts on 
destination chains and which actively executes Interchain Transactions on one or 
more chains. 

4. Receiving transaction quotes 
Once the Full Nodes have received the unsigned Interchain Transaction object, 
they can respond with a Transaction Quote.  
 
Transaction Quote Definition: The transaction quote is a quote by the Full Node, 
outlining under which conditions it is willing to commit the transactions within the 
Interchain Transaction object to the blockchain. The conditions of the quote 
are:​
 

1)​ Full payment info: The node checks the Payment Info object from the 
Interchain Transaction object and fills the missing data. For example, the 
PaymentInfo object could contain instructions “I want to pay with USDC on 
Arbitrum”. The Full Payment Info would then be populated with the amount 
of USDC that the node will require to execute the transaction.​
 

2)​ Information on which transactions will be committed. The Klaster nodes are 
stateless, so every back-and-forth request contains the full Interchain 
Transaction info. This enables the system to be easily distributed and 
highly parallelizable. ​
 

3)​ Maximum block height for every UserOp. The node returns the max block 
height on which it will guarantee the execution of a specific UserOp. This 
gives the dApp/Wallet a guaranteed timeframe for transaction execution. 

5. Quote selection 
The light node will receive the Transaction Quotes from the Full Nodes and then it 
will use some strategy to select the best transaction quote or pass the transaction 
quotes to the dApp/wallet if they have implemented their own selection strategy. 
Some potential strategies are: 
 

●​ Price optimized: Select the cheapest transaction quote. 

 



 

●​ Speed optimized: Select the transaction with the lowest Maximum Block 
height 

6. Connecting to the full node 

The dApp/Wallet connects directly to the Full Node whose transaction quote it 
selected. 

7. Generating the Interchain Commitment 
The dApp/Wallet sends the selected Transaction Quote to the Full Node which 
generated it and requests the creation of an Interchain Commitment. 
 
The Full Node takes the Interchain Transaction object and encodes it as a 
Merkle Tree of transactions. The root hash of that Merkle Tree is the hash of the 
Interchain Transaction. This is called the iTx hash and takes the format of 
0x_{64_character_hash}. The iTx hash describes the Interchain Transaction 
fully.  
 
 
An example iTx hash would look like   
 
0x0157c780e5b884bc442f790f2c9e403417fdf48b0fcd67f5976cfdcff85bdbac 
 
The Full Node then takes the Merkle Tree root hash and signs it with its private 
key. Once it has signed the root hash - it has committed itself to execute the 
Interchain Transaction.  
 
The Interchain Transaction data, together with the signed Merkle Tree root hash 
- is called an Interchain Commitment. 
 
At the end of the process, the full node sends the Interchain Transaction back to 
the dApp/Wallet 
 

8. User Signing the Interchain Commitment 
Once the dApp/Wallet has received the signed Interchain Commitment, it will sign 
the Merkle Tree root hash with the private key of the end user. This signature is 
used by the Klaster EntryPoint contracts to validate the UserOps which the user 
has requested.  
 
After this, two signatures of the Merkle Tree root exist: 

 



 

 
●​ Signed Node Commitment: Signed by the node private key, used to slash 

the node if they don’t execute the transactions.​
 

●​ Signed User Approval: Signed by the end-user private key, used to allow the 
Klaster PEN to commit the transactions to the blockchain(s) 

 

9. Distributing the signatures 
The dApp/Wallet will send both the Signed Node Commitment and the Signed 
User Approval to several participants of the Klaster PEN. 
 

●​ Committing node: The user is sending the commitment and user approval 
to the Full Node which gave them the Transaction Quote. When the full 
node is the one who is committing the transactions - we call them the 
Committing Nodes. ​
 

●​ Witness nodes: The guarantee of commitment is provided to the end-user 
by having the knowledge that if the Committing Node fails to execute the 
transactions, they will be slashed.  

 
However, the Commiting Node could also be exploited by the user. The user could 
request the Interchain Commitment, get the signed commitment from the Full 
Node and then not sign it. The user would then wait for the expiry period of the 
Interchain Commitment to pass, then sign the commitment and accuse the 
Commiting node of maliciously censoring the transaction. This is a variant of the 
famous Two Generals Problem. There is no way for the node to prove that it hasn’t 
received the transaction from the user - and there is no way for the user to prove 
that they actually did send the transaction and the node rejected it or there was a 
noisy communication channel in the middle.  
 
The Klaster protocol prevents this attack by requiring the end-user to gossip the 
signed transaction to the entire Klaster network. The end-user would send the 
Signed Node Commitment and the Signed User Approval to its peers, who would 
then gossip that data between themselves.  This would ensure that even if the 
Commiting Node is claiming it hasn’t received the signed commitment, the other 
nodes could tell the protocol that they have received the transaction and tried to 
gossip it to the Commiting Node. 
 

 



 

​
Slashing 
The security which users have in using the Klaster PEN comes from two 
guarantees: 
 

1.​ Fraudulent transaction protection. The Klaster PEN is unable to execute 
any transaction which is not part of the iTx Merkle Tree. These validations 
are enforced by the Klaster EntryPoint contracts - inheriting the security of 
the destination chains. ​
​
In practice, this means that Klaster users don’t need to put any additional 
trust assumptions into the Klaster PEN itself. As long as the EntryPoint 
contract works as expected, they are secure.​
 

2.​ Censorship protection / liveness guarantees. The Klaster network needs 
to provide its users with censorship protection and liveness guarantees in 
order to be a trusted solution for processing interchain transactions. For 
censorship protection, the network relies on two key components:​
 

a.​ Forced transaction execution - If the Klaster PEN were to censor the 
user, the user would be able to force their own transactions through, 
by manually calling the execute function on their destination Smart 
Contract Account​
 

b.​ Crypto-economic guarantees - The nodes are incentivized to execute 
the transactions by taking a transaction fee on top of the cost it takes 
them to execute the transactions. Beyond that, once a node has 
committed itself to execute the transaction - it must execute the 
entirety of that transaction or it will get slashed. 

 
 
The slashing system in Klaster is split on a per-chain basis. 
 
 

Slashing the offending node 
A Klaster PEN node will be slashed if it fails to execute any of the child transactions 
in the iTx bundle. If it fails to execute multiple transactions in the iTx bundle, it 
will be slashed on every chain where it failed to execute the transaction.  
 

 



 

Since every transaction in the iTx bundle has a maxBlockHeight variable, 
committed to by the node - once this block height has been reached on the chain 
on which the node failed to execute the transaction - a Challenge Period will 
begin. During the challenge period - the committing node can be slashed by the 
witness nodes. 
 
 
 
 
 
 
The process is as follows: 

1. Detection 
The witness nodes hold the non-stale gossiped interchain transactions (together 
with the signed proofs) in their memory and monitor the chain for block height. 
Once the block height for the transaction has been reached, the node will query 
the Klaster EntryPoint contract to see if the transaction has been executed. If the 
transaction has been executed, the witness node will prune the iTx from its 
memory. If the transaction hasn’t been executed - the witness node will start the 
slashing process. 
 

2. Slashing 
The witness node will call the slash function on the StakeManager smart contract 
with the signed proofs of what the node has committed itself to execute. The 
StakeManager will query the EntryPoint contract to see if the hash of the 
transaction that the node has committed itself to execute has been added to the 
executed transactions list. If the transaction is in the executed transactions list, 
the slash call will revert. If the transaction is not in the executed transactions list, 
the slashCommitedStake variable will be increased by the number of tokens that 
the witness node has staked in the StakeManager contract. ​
​
If the slashCommitedStake has increased above a predefined threshold value - the 
committing node will be slashed. The threshold value will be a function of the 
total economic value of the stake on every supported blockchain. For example, if 
the threshold value is set to 25%, the committing node will not be slashed, until 
nodes which hold at least 25% of the total stake on that chain - have not called the 
slash function.  
 

 



 

Slashing proof format 
In order to call the slash function, the proof of action has to be committed in a 
certain format. The Witness Node will call the slash function which has a following 
form: 
 
slash(userOp, signedItxRootHash) 
 
The userOp is the UserOp object which the node didn’t execute and the 
signedItxRootHash is the signed Merkle Tree root hash of the iTx transaction of 
which the non-executed userOp was the leaf. 
 

Smart Contract Stack (ERC4337 + Klaster) 
 
The Klaster PEN is a lightweight execution layer. 
In order to reduce the security profile of the 
system, all validation and verification is done on 
the smart contract levels. For this, Klaster reuses a 
lot of battle-tested ERC4337 architecture. 
 
Klaster validation happens through a custom 
ERC-7579 validation module, which verifies the 
validity of the Merkle Tree Root hash for the given 
UserOp.  
 
This makes the Klaster stack compatible with most 
ERC-4337 and ERC-7579 infrastructure.  
Some very interesting multichain use-cases are 

unlocked through this modular architecture. To name a few: 
 

●​ Passkey authentication: All passkey authentication systems today are 
single-chain. Klaster can enable the first, true multichain passkey 
authentication system.​
 

●​ Multi-chain multi-sig: Klaster can enable developers to build multi-chain 
multi-sig accounts. It can reuse the Klaster PEN and interchain 
commitments to use a single signature to update the signers of all smart 
accounts on all blockchains.​
 

●​ Global on-chain spending limits: Klaster can enforce global spending 
limits for all accounts on all chains. Each transaction would include a 

 



 

transaction for executing an action and another for globally propagating the 
spending limit. 

 

 
 

Implementation Examples 

Gas-abstracted wallets 
Interchain Transactions allow wallet developers to create gas abstracted wallets. 
These wallets are able to offer significantly better user flows. As long as a user has 
at least one of the supported payment tokens on at least one of the supported 
blockchains, the user is able to execute their transaction on any of the supported 
blockchains. For users, this means no more “bridging” gas to new blockchains, just 
to be able to execute transactions.  
 
For wallet developers, this can be a differentiating feature, enabling them to 
reduce the complexity of usage for new and experienced blockchain users. 

 



 

 
Example of a chain abstracted wallet 

 

Chain-abstracted dApps 
A “chain-abstracted” dApp would be a blockchain application which has no 
mention on which chain it is deployed. It’s able to access user funds across 
multiple independent blockchains and blend them into a “unified balance”. One of 
the examples of a chain-abstracted dApp would be the example from the 
beginning of this paper:​
 
A lending & borrowing aggregator which uses multiple lending & borrowing 
markets, across multiple blockchains - to find the best yield for supplying and the 
lowest interest rate for borrowing. 
 
The app would never mention any blockchain or underlying infrastructure. It 
would simply show the available assets and their respective yields. 

 
 

 



 

 
Example of chain-abstracted Lending & Borrowing market 

 
 

Multichain payment flows 
Users could use a single signature to enable the execution of transactions across 
multiple blockchains. Imagine a flow of paying out contractors or handling salaries 
on-chain. The users could be on any of the supported chains and the operator  
could pay them with no explicit bridging. 
 

 



 

 
Example of a multichain payment flow frontend. 

 
 
 
 
 
 
 
 
 

One-signature checkout flows 
The developer wishes to implement a checkout flow where a user can buy an NFT 
on Base chain, with assets on any other chain. The developer wishes to accept only 
USDC to their account. 

 



 

 
With Klaster, a simple interchain transaction can be encoded which: 
 

1.​ Swaps ETH for USDC on Optimism 
2.​ Bridges USDC from Optimism to Base 
3.​ Buys the NFT on Base 

 
For the end-user, this would be a single-transaction flow.  
 
 

 
Flowchart of a one-signature checkout flow 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 

The future of Klaster protocol (State/Storage 
Proofs, Keystore Rollup support, …) 
 
This implementation of the Klaster protocol has been optimized to work with 
solutions available on the market today. However, the architecture of the protocol 
and smart contracts has been devised in such a way that future upgrades are 
expected. 

Storage Proofs 
Storage proof support would unlock the ability to have unified staking & slashing 
across all supported blockchains. All node operators would post their stake to 
Ethereum and this would enable them to process transactions on all blockchains. 
 
The slashing of the stake would happen on Ethereum, with the slashing proof 
including a state proof of the commitment and non-execution of the desired 
UserOp on the destination blockchain. 
 

 

 

 
 
 
 
 
 

 



 

 

Keystore Rollup Support 
Klaster protocol could integrate the Minimal Keystore Rollup specification to 
enable the synchronization of state across multiple blockchains. This would move 
the security of the synchronization of the state from crypto-economic security 
(staking and slashing) to cryptographic proof security (validating the roots of 
Keystore rollups). 
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