& KLASTER

Klaster Whitepaper

May 2024

A novel P2P network standard enabling guaranteed conditional
execution of transactions across one or more independent
blockchains with a single off-chain signature.

Mislav Javor (mislav@polycode.sh)
Filip Dujmusi¢ (filip@polycode.sh)

With notable contributions from:

Ivan Piton, Luka Suci¢

mailto:mislav@polycode.sh
mailto:filip@polycode.sh

& KLASTER

Intro & rationale

Blockchain, born out of the desire to create a global decentralized currency -
Bitcoin, has evolved a lot over the fifteen years since it's been developed. The first
evolution came in the form of smart contract blockchains. Recognizing the
limitations of the "single-app" model of Bitcoin, the "world-computer" model of
Ethereum was born. This has allowed developers to build trustless &
trust-minimized applications and has resulted in the birth of several new
industries - most notably DeFi and NFTs.

Scalability challenges

However, while Ethereum has successfully solved for the "programmability" aspect
of blockchain, many challenges have remained to be solved. The most notable of
those is - scalability. Ethereum blockchain is notoriously unscalable - with a
maximum throughput of ~15 transactions per second. In times of market demand,
this can raise the fees for a simple "money transfer" action to well over $50. For
more complex transactions, these fees can reach into the $100 - $1000 range. This
issue has made DeFi the playground of the well-off and has stood as a barrier
towards decentralized services reaching mainstream adoption.

Scaling solutions

The problem of blockchain scalability has had many solutions, some more
successful than others. This document will not serve to iterate over all of them, but
just mention a few meaningful examples. First examples were the various
alternative blockchains, which operated with a few masternodes processing the
majority of transactions. Some examples include Polygon PoS & Binance Smart
Chain.

The second category were blockchains operating on a different model from
Ethereum - implementing alternate virtual machines, sharding and many other
scaling techniques. Some examples in this category include NEAR Protocol &
Solana. The third category, and the one this paper will focus on the most are
so-called "rollups".

Rollups are attached to a "parent” blockchain and use some form of cryptography
to "inherit" a part of all of the security of the "parent” blockchain. Most rollups
today can broadly be split into two categories - Optimistic Rollups and Zero
Knowledge Rollups.

& KLASTER

Some notable examples of rollups include Optimism, Base, Arbitrum, zkSync,
Polygon zkEVM, Scroll, etc...

With the methods outlined in the text above, blockchain fees can be reduced to
<$0.01 per transaction, which unlocks the potential of blockchain to a much wider
audience.

Modular Blockchain & Data Availability

Coming back to rollups - in this paper we will focus on Ethereum-aligned rollups
("EVM Rollups"). In order to achieve the functionality promised by those rollups, a
lot of changes needed to be done at the protocol level.

Since neither Ethereum nor its associated virtual machine - the EVM - were
originally built with rollups in mind, the developers started adapting the core
blockchains and building novel solutions to support functionality of rollups. The
most notable one of these solutions was the appearance of "Data Availability"
layers - protocols which store the data required by rollups to ensure the security of
validated transactions. Some of these protocols include Celestia and NEAR. Even
Ethereum itself adapted to support roll ups - with the ERC4844 improvement -
called "proto danksharding". While technically different, all of these protocols
functionally achieve the same thing - they provide a cheap but ephemeral storage
for rollup data - a technical prerequisite for rollups to hit the <$0.01/tx goal.

Scaling state of art

With rollups and data availability - blockchains have mostly been scaled for the
needs of users today. Most transactions today can be executed on L2/L3
blockchains for $0.01 - $0.1.

Usability challenges

While scalability has been touted as the biggest challenge towards the mainstream
adoption of blockchain technology, it is by no means the only one. The usability of
many blockchain architectures is substandard. Again, this paper will explore the
Ethereum (EVM) ecosystem, but similar conclusions can be applied to other
architectures.

& KLASTER

Transaction Fees (Gas)

One of the core features of smart contract blockchain architectures is the concept
of "gas". Gas is used to pay for transactions and is usually denominated in a coin
which is native to the blockchain on which the transaction is being executed. On
Ethereum, this coin is Ether (ETH). Gas is a necessary requirement for smart
contract blockchains. It prevents malicious users griefing the nodes which validate
the transactions by running expensive computation or infinite loops. However, gas
introduces complexity when people are interacting with tokens which are not
native to the blockchain on which the transaction is being executed.

One example of such a token is USDC. This is a token, deployed on all major
programmable blockchain networks which is tied 1:1 to the United States Dollar.
Many users interact with these tokens, since they're looking to escape from the
value volatility of crypto-only tokens, such as ETH or BTC. However, when a user is
sending USDC to someone, they need to have not only USDC, but also the native
currency. So in the case of sending ETH on Ethereum, the user must have USDC
and ETH.

This means that users must continually maintain the balance of ETH and "seed"
every new address that they create with an initial ETH balance. For new users, this
is another friction point which requires a learning curve and disincentivizes
adoption.

This problem has been explored and approached through many standards. On
Ethereum, it's mainly solved by Account Abstraction teams working on standards
such as ERC4337 & ERC3074. Later in this paper, we will present a novel approach
to this problem.

Elliptic curves

While interacting with smart contract blockchains, users must commit signed
transactions to the blockchain. These transactions are based on asymmetric
cryptography, notably - elliptic curve cryptography. Each blockchain can choose
their own curve, but the most popular one is secp256k used by Bitcoin, Ethereum
and all EVM rollups. For example, Solana uses curve25519 and thus validates the
cryptographic commitments differently.

Elliptic curve cryptography isn't specific to blockchains only, and many
interesting solutions exist which implement different elliptic curves. One such
example is Passkey Authentication, which uses ES256 as its authentication curve. In
native blockchain implementations, these alternate methods are not supported -
limiting the usability of blockchains.

& KLASTER

Account recovery & protections

Handling crypto in self-custody is off-putting to many users since they must take
care of preserving their own accounts and protecting themselves from losses. If
the users lose access to their private key, they lose access to their funds. While
"crypto natives" have adjusted to this way of thinking - it remains a large hurdle
towards adoption of crypto self-custody.

Smart contract accounts

Similar to solving the gas fee problem, the solutions to the usage of elliptic curves
and account recovery are Smart Contract Accounts (SCAs). These accounts can
attach arbitrary execution logic to any transaction and as such they can improve
the usability of blockchain systems substantially. Some examples of SCAs include:

e Gas abstraction & sponsorship: Allowing the users to cover on-chain
transaction fees with non-native assets _or_ allowing blockchain
applications to sponsor the gas costs for their users.

e Account recovery: The ability for users to recover funds if they lose access
to their private key. This can be done through a trusted recovery provider or
through methods such as social recovery.

e Custom elliptic curves: The ability for users to use passkeys or other
cryptography which is not native to the core blockchain.

e Custom execution logic: The ability for users to customize the execution
logic of their blockchain accounts. This includes setting spending limits,
authorizing multiple signers, requiring a form of two-factor authentication,
etc...

Problems with rollups & smart accounts

While rollups have solved for scalability & smart accounts have solved for usability
- they have introduced a new set of problems - which Klaster was created to solve.
These problems can broadly be categorized into two main categories:

o Asset fragmentation: When users are interacting with multiple rollups,
their assets are fragmented and can’t be easily accessed by applications. If
the user has supplied e.g. USDC to AAVE on Arbitrum and wants to deposit to

& KLASTER

a different lending protocol on e.g. Base - they must first unwind their AAVE
position, bridge their assets and then they call the deposit transaction on the
destination chain. The user is required to interact with three separate
applications and sign three separate transactions to get the effect they
desire.

e Account fragmentation: If users wish to access the benefits of Smart
Contract Accounts that we mentioned earlier, they must deploy separate
instances of the same Smart Contract Account on all the blockchains they’re
using. Thus, the applications which work with these accounts are not able to
assume that the user has an account available on different blockchains.
Beyond this, when the user is changing the authorization or management
modules on their smart account - the changes are not distributed to other
blockchains. This fragments the accounts which the user has and they have
to separately maintain multiple instances of accounts across every rollup
they use. If we’re moving towards a thousand+ rollup future - this becomes
completely unsustainable.

Transaction Commitment Layer

This paper will present a novel mechanism, through which users are able to
execute multiple transactions, across multiple independent blockchain networks
(L1s & rollups) - with a single off-chain signature.

Separating transaction commitment and execution

To achieve this, we separate transaction commitment (sending a signed transaction
to the blockchain) from transaction execution (blockchain nodes receiving and
processing the transaction).

Transaction #1 Transaction #2 Transaction #3

Interchain
Transaction
Public Execution Network
N S
RPC RPC RPC

I

Blockchain A Blockehain B Blockechain C

& KLASTER

In traditional blockchain execution models, once the user has signed a transaction,
the transaction is immediately posted to the blockchain, picked up by the nodes
and executed. This design was created for single-chain flows and works quite well
- as long as the user is interacting with one blockchain only.

However, when the user/dApp/Wallet wishes to encode actions that traverse
multiple blockchains - and those are becoming more and more common as rollups
gain market share - they must manually commit each transaction to its respective
blockchain. Committing a transaction includes:

1) Encoding the transaction
2) Signing the transaction with a private key
3) Calling the RPC endpoint of a node for that blockchain network.

What this paper proposes is to create a separate, non-blockchain P2P network -
which would have the sole purpose of committing transactions to blockchains.

Execution Mechanism

We will start by introducing the protocol technical primitives:

e Interchain Transaction (iTx): An interchain transaction is a bundle of one
or more blockchain transactions, to be executed on one or more blockchain
networks. Thus, each interchain transaction can contain an arbitrary
number of “regular” blockchain transactions. iTx is encoded as a Merkle
Tree of “child” transactions. The iTx hash is the root hash of that Merkle
Tree.

e Interchain Commitment: An interchain commitment is the root hash of the
Interchain Transaction Merkle Tree root signed by a Klaster Node. This
commits the node to execute all the transactions in that iTx or get slashed by
the Klaster protocol.

e Public Execution Network (PEN): The Klaster P2P network serves to
execute the Interchain Commitments. It uses staked or re-staked tokens to
provide economic guarantees of execution. This will be the Klaster Public
Execution Network (PEN)

e Multichain Smart Account: A Multichain Smart Account is a Smart Contract
Account which is available on multiple blockchains. It uses deterministic
address derivation to provide the dApps which interact with it an address
for every blockchain - which they can have certainty is under the control of
the same user. Users are able to derive an arbitrary number of Multichain
Smart Accounts from a single “master” account by providing the derivation

& KLASTER

function with a Salt parameter.

Executing an interchain transaction

When executing an Interchain Transaction, the Klaster PEN must follow a strict
process.

1. Encoding the Interchain Transaction

dApp/Wallet creates an Interchain Transaction object. This object contains all
the required information for the nodes to execute a sequence of transactions
across multiple blockchains. The Interchain Transaction object contains:

1) A list of native blockchain transaction objects.

a) For EVM, these are ERC4337 UserOp objects, with extra information on
top. The extra information is:

i) ChainID on which the UserOp needs to be executed

ii) Salt parameter, determining which of the derived Multichain
Smart Accounts the transaction needs to be executed on.

iii) Minimum Block Height determining the earliest block height
on which the node is to execute the transaction.

b) For every other VM (e.g. Soalana, Near, ...) a transaction encoding
standard needs to be defined. This is beyond the scope of this version
of the whitepaper.

2) Payment information. The user communicates a Payment Info objectin
which they specify how they would like to cover the cost of executing the
Interchain Transaction. This can include payments in native gas tokens,
payments in some other tokens (ERC20 or otherwise) or even an off-chain
payment structure (pay by credit card, prepay transactions with a “gas
tank”, subsidized transactions)

Interchain Transaction Example

One example of an interchain transaction would be a transaction which moves a
lending position to a blockchain which has the most favorable yield with a single

signature.
1. Withdraw USDT from AAVE on Optimism

2. Call Across to bridge USDT from Optimism to Arbitrum
3. Supply USDT to AAVE on Arbitrum

& KLASTER

4. Withdraw USDC from AAVE on Polygon
5. Call Across to bridge from Polygon to Base
6. Deposit USDC to AAVE on Base

Transaction Flow Diagram
Interchain Transaction

State #1: User has 100aUSDT on Optimism State #1: User has 100aUSDC on Polygon

\4 l
AAVE: Withdraw aUSDT to USDT AAVE: Withdraw aUSDC to USDC
\ 4 l
Call allBridge to bridge from Optimism to Call allBridge to bridge from Polygon to
Arbitrum Base

\ 4 l

AAVE: Deposit USDT to AAVE on Arbitrum AAVE: Deposit USDC to AAVE on Base
\ 4 \ 4

State #2: User has ~100aUSDT on Arbitrum State #2: User has ~100aUSDC on Base

An example of an interchain transaction flow

The interchain transaction will be encoded as a Merkle Tree, where all of the child
transactions will be the leafs. The iTx hash - is the Merkle Tree root hash of all of
the child transactions.

& KLASTER

iTx Encoding Example

Interchain Transaction Hash (iTx Hash)

A

Hash Hash Hash Hash
A A A A
Tx #1: Tx #2: Tx #4: Tx #4:
" N Tx #3: N 5 Tx #5:
Withdraw Call aII.Bndge Supply USDT to Withdraw Call 'aIIBrldge Supply USDT Empty Empty
USDT from USDC: OP > AAVE USDT from USDT: MATIC -> to AAVE Leaf Leaf
AAVE ARB AAVE BASE

Example of a Merkle Tree encoding for an interchain transaction

2. Sending the Interchain Transaction

The dApp/Wallet is connected to a Light Node. A light node is a node in the Klaster
PEN which does not execute Interchain Transactions nor does it provide Interchain
Commitments. The light node would be owned and operated by the dApp or Wallet
developers / operators. The role of the light node is to run auxiliary tasks - such as:

o 1TX gas cost simulation
o Maintaining a list of full-node peers

o Providing network gossip to non-committing full nodes for slashing
purposes.

In this step, the dApp/Wallet will send the unsigned Interchain Transaction to
the light node.

3. Interchain transaction pre-processing

The interchain transaction will be pre-processed by the light node. The light node
will take all the child transactions and simulate the gasLimit for those
transactions. If gasLimit has been provided by the wallet/dApp - no simulation
will be done.

& KLASTER

After the transaction has been pre-processed, the light node will pass the unsigned
Interchain Transaction bundle to its Full Node peers in the Public Execution
Network.

Full Node Definition: A full node is a node which has the ability to generate
Interchain Commitments, has staked tokens in the StakeManager contracts on
destination chains and which actively executes Interchain Transactions on one or
more chains.

4. Receiving transaction quotes

Once the Full Nodes have received the unsigned Interchain Transaction object,
they can respond with a Transaction Quote.

Transaction Quote Definition: The transaction quote is a quote by the Full Node,
outlining under which conditions it is willing to commit the transactions within the
Interchain Transaction object to the blockchain. The conditions of the quote
are:

1) Full payment info: The node checks the Payment Info object from the
Interchain Transaction object and fills the missing data. For example, the
PaymentInfo object could contain instructions “I want to pay with USDC on
Arbitrum”. The Full Payment Info would then be populated with the amount
of USDC that the node will require to execute the transaction.

2) Information on which transactions will be committed. The Klaster nodes are
stateless, so every back-and-forth request contains the full Interchain
Transaction info. This enables the system to be easily distributed and
highly parallelizable.

3) Maximum block height for every UserOp. The node returns the max block
height on which it will guarantee the execution of a specific UserOp. This
gives the dApp/Wallet a guaranteed timeframe for transaction execution.

5. Quote selection

The light node will receive the Transaction Quotes from the Full Nodes and then it
will use some strategy to select the best transaction quote or pass the transaction
quotes to the dApp/wallet if they have implemented their own selection strategy.
Some potential strategies are:

e Price optimized: Select the cheapest transaction quote.

& KLASTER

e Speed optimized: Select the transaction with the lowest Maximum Block
height

6. Connecting to the full node

The dApp/Wallet connects directly to the Full Node whose transaction quote it
selected.

7. Generating the Interchain Commitment

The dApp/Wallet sends the selected Transaction Quote to the Full Node which
generated it and requests the creation of an Interchain Commitment.

The Full Node takes the Interchain Transaction object and encodes it as a
Merkle Tree of transactions. The root hash of that Merkle Tree is the hash of the
Interchain Transaction. This is called the iTx hash and takes the format of
0Ox_{64_character_hash}. The iTx hash describes the Interchain Transaction
fully.

An example iTx hash would look like
Ox0157c780e5b884bc442f7901f2c9e403417fdf48b0fcd67f5976cfdcff85bdbac

The Full Node then takes the Merkle Tree root hash and signs it with its private
key. Once it has signed the root hash - it has committed itself to execute the

Interchain Transaction.

The Interchain Transaction data, together with the signed Merkle Tree root hash
-iscalled an Interchain Commitment.

At the end of the process, the full node sends the Interchain Transaction back to
the dApp/Wallet

8. User Signing the Interchain Commitment

Once the dApp/Wallet has received the signed Interchain Commitment, it will sign
the Merkle Tree root hash with the private key of the end user. This signature is
used by the Klaster EntryPoint contracts to validate the UserOps which the user
has requested.

After this, two signatures of the Merkle Tree root exist:

& KLASTER

e Signed Node Commitment: Signed by the node private key, used to slash
the node if they don’t execute the transactions.

e Signed User Approval: Signed by the end-user private key, used to allow the
Klaster PEN to commit the transactions to the blockchain(s)

9. Distributing the signatures

The dApp/Wallet will send both the Signed Node Commitment and the Signed
User Approval to several participants of the Klaster PEN.

e Committing node: The user is sending the commitment and user approval
to the Full Node which gave them the Transaction Quote. When the full
node is the one who is committing the transactions - we call them the
Committing Nodes.

e Witness nodes: The guarantee of commitment is provided to the end-user
by having the knowledge that if the Committing Node fails to execute the
transactions, they will be slashed.

However, the Commiting Node could also be exploited by the user. The user could
request the Interchain Commitment, get the signed commitment from the Full
Node and then not sign it. The user would then wait for the expiry period of the
Interchain Commitment to pass, then sign the commitment and accuse the
Commiting node of maliciously censoring the transaction. This is a variant of the
famous Two Generals Problem. There is no way for the node to prove that it hasn’t
received the transaction from the user - and there is no way for the user to prove
that they actually did send the transaction and the node rejected it or there was a
noisy communication channel in the middle.

The Klaster protocol prevents this attack by requiring the end-user to gossip the
signed transaction to the entire Klaster network. The end-user would send the
Signed Node Commitment and the Signed User Approval to its peers, who would
then gossip that data between themselves. This would ensure that even if the
Commiting Node is claiming it hasn’t received the signed commitment, the other
nodes could tell the protocol that they have received the transaction and tried to
gossip it to the Commiting Node.

Full Node dApp / Wallet Light Node

Gossip Network Diagram

User

Light Node

¢ ¢ Gossip’ Request Execution
‘ Witness Node ‘ ‘ Witness Node }7Gossip Commiting Node
- - |

& KLASTER

Slashing

The security which users have in using the Klaster PEN comes from two
guarantees:

1. Fraudulent transaction protection. The Klaster PEN is unable to execute
any transaction which is not part of the iTx Merkle Tree. These validations
are enforced by the Klaster EntryPoint contracts - inheriting the security of
the destination chains.

In practice, this means that Klaster users don’t need to put any additional
trust assumptions into the Klaster PEN itself. As long as the EntryPoint
contract works as expected, they are secure.

2. Censorship protection / liveness guarantees. The Klaster network needs
to provide its users with censorship protection and liveness guarantees in
order to be a trusted solution for processing interchain transactions. For
censorship protection, the network relies on two key components:

a. Forced transaction execution - If the Klaster PEN were to censor the
user, the user would be able to force their own transactions through,
by manually calling the execute function on their destination Smart
Contract Account

b. Crypto-economic guarantees - The nodes are incentivized to execute
the transactions by taking a transaction fee on top of the cost it takes
them to execute the transactions. Beyond that, once a node has
committed itself to execute the transaction - it must execute the
entirety of that transaction or it will get slashed.

The slashing system in Klaster is split on a per-chain basis.

Slashing the offending node

A Klaster PEN node will be slashed if it fails to execute any of the child transactions
in the iTx bundle. If it fails to execute multiple transactions in the iTx bundle, it
will be slashed on every chain where it failed to execute the transaction.

& KLASTER

Since every transaction in the iTx bundle has a maxBlockHeight variable,
committed to by the node - once this block height has been reached on the chain
on which the node failed to execute the transaction - a Challenge Period will
begin. During the challenge period - the committing node can be slashed by the
witness nodes.

The process is as follows:

1. Detection

The witness nodes hold the non-stale gossiped interchain transactions (together
with the signed proofs) in their memory and monitor the chain for block height.
Once the block height for the transaction has been reached, the node will query
the Klaster EntryPoint contract to see if the transaction has been executed. If the
transaction has been executed, the witness node will prune the iTx from its
memory. If the transaction hasn’t been executed - the witness node will start the
slashing process.

2. Slashing

The witness node will call the slash function on the StakeManager smart contract
with the signed proofs of what the node has committed itself to execute. The
StakeManager will query the EntryPoint contract to see if the hash of the
transaction that the node has committed itself to execute has been added to the
executed transactions list. If the transaction is in the executed transactions list,
the slash call will revert. If the transaction is not in the executed transactions list,
the slashCommitedStake variable will be increased by the number of tokens that
the witness node has staked in the StakeManager contract.

If the slashCommitedStake has increased above a predefined threshold value - the
committing node will be slashed. The threshold value will be a function of the
total economic value of the stake on every supported blockchain. For example, if
the threshold value is set to 25%, the committing node will not be slashed, until
nodes which hold at least 25% of the total stake on that chain - have not called the
slash function.

Slashing proof format

& KLASTER

In order to call the slash function, the proof of action has to be committed in a
certain format. The Witness Node will call the slash function which has a following

form:

slash(userOp, signedItxRootHash)

The userOp is the UserOp object which the node didn’t execute and the
signedItxRootHash is the signed Merkle Tree root hash of the iTx transaction of
which the non-executed userOp was the leaf.

Smart Contract Stack (ERC4337 + Klaster)

Klaster Proxy EntryPoint

y

ERC4337

EntryPoint

y

Klaster Validation Module

ERC4337 IAccount

The Klaster PEN is a lightweight execution layer.
In order to reduce the security profile of the
system, all validation and verification is done on
the smart contract levels. For this, Klaster reuses a
lot of battle-tested ERC4337 architecture.

Klaster validation happens through a custom
ERC-7579 validation module, which verifies the
validity of the Merkle Tree Root hash for the given
UserOp.

This makes the Klaster stack compatible with most
ERC-4337 and ERC-7579 infrastructure.
Some very interesting multichain use-cases are

unlocked through this modular architecture. To name a few:

e Passkey authentication: All passkey authentication systems today are
single-chain. Klaster can enable the first, true multichain passkey

authentication system.

e Multi-chain multi-sig: Klaster can enable developers to build multi-chain
multi-sig accounts. It can reuse the Klaster PEN and interchain
commitments to use a single signature to update the signers of all smart
accounts on all blockchains.

e Global on-chain spending limits: Klaster can enforce global spending
limits for all accounts on all chains. Each transaction would include a

& KLASTER

transaction for executing an action and another for globally propagating the
spending limit.

Implementation Examples

Gas-abstracted wallets

Interchain Transactions allow wallet developers to create gas abstracted wallets.
These wallets are able to offer significantly better user flows. As long as a user has
at least one of the supported payment tokens on at least one of the supported
blockchains, the user is able to execute their transaction on any of the supported
blockchains. For users, this means no more “bridging” gas to new blockchains, just
to be able to execute transactions.

For wallet developers, this can be a differentiating feature, enabling them to
reduce the complexity of usage for new and experienced blockchain users.

& KLASTER

W

SEND TOKENS
! ASSET / NETWORK AMOUNT SENDING
® usD coin
6

| Cﬂ Polygon 2 3UsDC
| FROM TO
|

OxDAd6. . .C4eF OxDAd6BO. ..FC6C4eF
| |

TRANSACTION FEE £ AUTO SELECTED o

USDC - OxFOE...7Cd871

© Optimism =$0.0107

Example of a chain abstracted wallet

Chain-abstracted dApps

A “chain-abstracted” dApp would be a blockchain application which has no
mention on which chain it is deployed. It’s able to access user funds across
multiple independent blockchains and blend them into a “unified balance”. One of
the examples of a chain-abstracted dApp would be the example from the
beginning of this paper:

Alending & borrowing aggregator which uses multiple lending & borrowing
markets, across multiple blockchains - to find the best yield for supplying and the
lowest interest rate for borrowing.

The app would never mention any blockchain or underlying infrastructure. It
would simply show the available assets and their respective yields.

Your supplies

Nothing supplied yet.

Assets to supply

Name

®

©

uUsDC

UsDT

LINK

StETH

Multichain payment flows

APY

4.13%

7.219%

8.82%

9.79%

Example of chain-abstracted Lending & Borrowing market

Supply

Supply

Supply

Supply

Your borrows

Nothing borrowed yet.

Assets to borrow

Name

)

7

UsDC

UsDT

LINK

stETH

APY

4.13%

T7.21%

8.82%

9.79%

& KLASTER

| Borrow
| Borrow
Jl Borrow

| Borrow

Users could use a single signature to enable the execution of transactions across
multiple blockchains. Imagine a flow of paying out contractors or handling salaries
on-chain. The users could be on any of the supported chains and the operator

could pay them with no explicit bridging.

Select token

‘ @©) uspc

¥ Add recipients

0x13253bb1667073. .

0x13253bb1667073. .

0x13253bb1667073. .

0x13253bb1667073. .

0x13253bb1667073. .

Recipient

Recipient address

€p usor

.60843ac8dD410d2a8

.60843ac8dD410d2a8

.60843ac8dD410d2a8

.60843ac8dD410d2a8

.60843ac8dD410d2a8

123.00
usDC

232.22
usDC

23.33
usDC

123.31
uUsDC

87.22
usDC

Amount

.l Amount

& KLASTER

© or 7 W

7 ARB V4 o

® wmatic Vi T}

© Base Ve W

8 scroll Y o
Network

usDC 8 Scroll v v

Example of a multichain payment flow frontend.

One-signature checkout flows

The developer wishes to implement a checkout flow where a user can buy an NFT
on Base chain, with assets on any other chain. The developer wishes to accept only

USDC to their account.

& KLASTER

With Klaster, a simple interchain transaction can be encoded which:
1. Swaps ETH for USDC on Optimism
2. Bridges USDC from Optimism to Base
3. Buysthe NFT on Base

For the end-user, this would be a single-transaction flow.

One signature checkout flow

ETH on USDC on) USDC on NFT on
Optimism Swap— Optimism [—Bridge—> Base —Buy— Base

Flowchart of a one-signature checkout flow

& KLASTER

The future of Klaster protocol (State/Storage
Proofs, Keystore Rollup support, ...)

This implementation of the Klaster protocol has been optimized to work with
solutions available on the market today. However, the architecture of the protocol
and smart contracts has been devised in such a way that future upgrades are
expected.

Storage Proofs

Storage proof support would unlock the ability to have unified staking & slashing
across all supported blockchains. All node operators would post their stake to
Ethereum and this would enable them to process transactions on all blockchains.

The slashing of the stake would happen on Ethereum, with the slashing proof
including a state proof of the commitment and non-execution of the desired
UserOp on the destination blockchain.

& KLASTER

Keystore Rollup Support

Klaster protocol could integrate the Minimal Keystore Rollup specification to
enable the synchronization of state across multiple blockchains. This would move
the security of the synchronization of the state from crypto-economic security
(staking and slashing) to cryptographic proof security (validating the roots of
Keystore rollups).

Keystore Rollup

SCA Configuration i

\ 4 Y

l SCA ‘ SCA SCA SCA

1 [i]

Transaction Relaying

Klaster PEN

	
	
	
	
	Klaster Whitepaper
	Intro & rationale
	Scalability challenges
	Scaling solutions
	Modular Blockchain & Data Availability
	Scaling state of art
	Usability challenges
	Transaction Fees (Gas)
	Elliptic curves
	Account recovery & protections

	Smart contract accounts
	Problems with rollups & smart accounts

	Transaction Commitment Layer
	Separating transaction commitment and execution
	Execution Mechanism
	Executing an interchain transaction
	1. Encoding the Interchain Transaction
	Interchain Transaction Example

	
	2. Sending the Interchain Transaction
	3. Interchain transaction pre-processing
	4. Receiving transaction quotes
	5. Quote selection
	6. Connecting to the full node
	7. Generating the Interchain Commitment
	8. User Signing the Interchain Commitment
	9. Distributing the signatures

	​Slashing
	Slashing the offending node
	1. Detection
	2. Slashing

	Slashing proof format

	Smart Contract Stack (ERC4337 + Klaster)
	

	Implementation Examples
	Gas-abstracted wallets
	Chain-abstracted dApps
	Multichain payment flows
	One-signature checkout flows
	

	The future of Klaster protocol (State/Storage Proofs, Keystore Rollup support, …)
	Storage Proofs
	
	
	
	
	Keystore Rollup Support

